Study on the pathophysiology of experimental Burkholderia pseudomallei infection in mice.

نویسندگان

  • Y P Gauthier
  • R M Hagen
  • G S Brochier
  • H Neubauer
  • W D Splettstoesser
  • E J Finke
  • D R Vidal
چکیده

Burkholderia pseudomallei is the etiological agent of melioidosis, a potentially fatal disease occurring in man and animals. The aim of this study was to investigate the pathophysiological course of experimental melioidosis, and to identify the target organs, in an animal model. For this purpose SWISS mice were infected intraperitoneally with the virulent strain B. pseudomallei 6068. The bacterial load of various organs was quantified daily by bacteriological analysis and by an enzyme-linked immunosorbent assay (ELISA) based on a monoclonal antibody specific to B. pseudomallei exopolysaccharide (EPS). Electron microscopic investigation of the spleen was performed to locate the bacteria at the cellular level. In this model of acute melioidosis, B. pseudomallei had a marked organ tropism for liver and spleen, and showed evidence of in vivo growth with a bacterial burden of 1.6x10(9) colony forming units (CFU) per gram of spleen 5 days after infection with 200 CFU. The highest bacterial loads were detected in the spleen at all time points, in a range from 2x10(6) to 2x10(9) CFU g(-1). They were still 50-80 times greater than the load of the liver at the time of peak burden. Other investigated organs such as lungs, kidneys, and bone marrow were 10(2)-10(4)-fold less infected than the spleen, with loads ranging from 3x10(2) to 3x10(6) CFU g(-1). The heart and the brain were sites of a delayed infection, with counts in a range from 10(3) to 10(7) times lower than bacterial counts in the spleen. The EPS-specific ELISA proved to be highly sensitive, particularly at the level of those tissues in which colony counting on agar revealed low contamination. In the blood, EPS was detected at concentrations corresponding to bacterial loads ranging from 8x10(3) to 6x10(4) CFU ml(-1). Electron microscopic examination of the spleen revealed figures of phagocytosis, and the presence of large numbers of intact bacteria, which occurred either as single cells or densely packed into vacuoles. Sparse figures suggesting bacterial replication were also observed. In addition, some bacteria could be seen in vacuoles that seemed to have lost their membrane. These observations provide a basis for further investigations on the pathogenesis of the disease.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental Persistent Infection of BALB/c Mice with Small-Colony Variants of Burkholderia pseudomallei Leads to Concurrent Upregulation of PD-1 on T Cells and Skewed Th1 and Th17 Responses

BACKGROUND Burkholderia pseudomallei (B. pseudomallei), the causative agent of melioidosis, is a deadly pathogen endemic across parts of tropical South East Asia and Northern Australia. B. pseudomallei can remain latent within the intracellular compartment of the host cell over prolonged periods of time, and cause persistent disease leading to treatment difficulties. Understanding the immunolog...

متن کامل

Protection against experimental melioidosis following immunization with live Burkholderia thailandensis expressing a manno-heptose capsule.

Melioidosis is a severe infectious disease caused by Burkholderia pseudomallei. It is highly resistant to antibiotic treatment, and there is currently no licensed vaccine. Burkholderia thailandensis is a close relative of Burkholderia pseudomallei but is essentially avirulent in mammals. In this report, we detail the protective efficacy of immunization with live B. thailandensis E555, a strain ...

متن کامل

Migration of dendritic cells facilitates systemic dissemination of Burkholderia pseudomallei.

Burkholderia pseudomallei, the etiological agent for melioidosis, is an important cause of community-acquired sepsis in northern Australia and northeast Thailand. Due to the rapid dissemination of disease in acute melioidosis, we hypothesized that dendritic cells (DC) could act as a vehicle for dissemination of B. pseudomallei. Therefore, this study investigated the effect of B. pseudomallei in...

متن کامل

Analogous cytokine responses to Burkholderia pseudomallei strains contrasting in virulence correlate with partial cross-protection in immunized mice.

Cytokine mRNA levels were assessed in Burkholderia pseudomallei-susceptible BALB/c mice and B. pseudomallei-resistant C57BL/6 mice following administration of a sublethal dose of less virulent (LV) B. pseudomallei, a candidate immunogen tested for protection against a highly virulent (HV) challenge. Compared on the basis of the bacterial loads, the cytokine patterns induced by HV and LV B. pseu...

متن کامل

A critical role for neutrophils in resistance to experimental infection with Burkholderia pseudomallei.

Inhalation is an important route of infection with Burkholderia pseudomallei, the causative agent of melioidosis. In resistant C57BL/6 mice, activated neutrophils are rapidly recruited to the lungs after intranasal B. pseudomallei infection. Prevention of this response by use of the anti-Gr-1+ cell-depleting monoclonal antibody RB6-8C5 severely exacerbated disease, resulting in an acute lethal ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • FEMS immunology and medical microbiology

دوره 30 1  شماره 

صفحات  -

تاریخ انتشار 2001